Skip to content
biopharma.ai
  • Home
  • Design
  • Produce
  • Test
  • News
  • Docs
  • Events
    • Webinars
  • About
Contact Us
Contact Us
biopharma.ai
  • Home
  • Design
  • Produce
  • Test
  • News
  • Docs
  • Events
    • Webinars
  • About

Docs

  • ICH guidlines
    • Safety Guidelines
      • S10
      • S11
      • S12
      • S9
      • S8
      • S7B
      • S7A
      • S6(R1)
      • S5(R3)
      • S4
      • S3B
      • S3A
      • S2(R1)
      • S1C(R2)
      • S1B(R1)
      • S1A
View Categories
  • Home
  • Docs
  • Docs
  • ICH guidlines
  • Safety Guidelines
  • S12

S12

28 min read

1.   INTRODUCTION

1.1. Objectives of the ICH S12 Guideline

The objective of this guideline is to provide harmonised recommendations for the conduct of nonclinical biodistribution (BD) studies in the development of gene therapy (GT) products. This  document  provides  recommendations   for  the   overall   design  of  nonclinical   BD assessments. Considerations for interpretation and application of the BD data to support a nonclinical development programme and the design of clinical trials are also provided. The recommendations in this guideline endeavour to facilitate the development of GT products while avoiding unnecessary use of animals, in accordance with the 3Rs (reduce/refine/replace) principles.

1.2. Background

An understanding of the BD profile of a GT product following in vivo administration is an important element of the nonclinical development programme. BD data contribute to the inter- pretation and design of nonclinical pharmacology and toxicology studies conducted to support early-phase clinical trials in the target population. Although guidelines that include recommen- dations for BD studies have been issued by various regulatory authorities, this document pro- vides a harmonised definition for nonclinical BD and conveys overall considerations for as- sessing BD for GT products. With continued scientific advances in the GT field, incorporation of this topic in early discussions of the nonclinical program for a GT product with the appro- priate regulatory authority is also encouraged.

1.3.  Scope

GT products within the scope of this guideline include products that mediate their effect by the expression (transcription or translation) of transferred genetic materials. Some examples of GT products can include purified nucleic acid (e.g., plasmids and RNA), microorganisms (e.g., viruses, bacteria, fungi) genetically modified to express transgenes (including products that edit the host genome), and ex vivo genetically modified human cells. Products that are intended to alter the host cell genome in vivo without specific transcription or translation (i.e., delivery of a nuclease and guide RNA by non-viral methods) are also covered in this guidance. Although not currently considered GT in certain regions, the principles outlined in this guideline are also applicable to oncolytic viruses that are not genetically modified to express a transgene.

This   guideline   does   not    apply    to   prophylactic    vaccines.    Chemically    synthesised oligonucleotides  or their  analogues, which  are not produced using  a biotechnology-based manufacturing process, are also outside the scope of this guideline.

The release of a GT product outside the body via excreta and secreta (faeces, urine, saliva, nasopharyngeal fluids, etc.), or through the skin (pustules, sores, wounds) is termed “shedding” . Evaluation of the nonclinical shedding profile of a GT product is outside the scope of this guideline. Assessment of genomic integration and germline integration of GT products is also outside the scope of this guideline. Considerations for these aspects of nonclinical data can be found in existing ICH Consideration documents (1, 2).

2.    DEFINITION OF NONCLINICAL BD

BD is the in vivo distribution, persistence, and clearance of a GT product at the site of admin- istration and in target and non-target tissues, including biofluids (e.g., blood, cerebrospinal fluid, vitreous fluid). Nonclinical BD assessment entails the use of analytical methods to detect the GT product and transferred genetic material in collected samples and can include methods to detect the expression product of the transferred genetic material.

3.    TIMING OF NONCLINICAL BD ASSESSMENT

BD data should be available when evaluating and interpreting the nonclinical pharmacology and toxicology findings. Nonclinical BD data can also inform design aspects of a first-in-human clinical trial (see Section 6). It is important that nonclinical BD assessment be completed prior to initiation of the clinical trial.

4.    DESIGN OF NONCLINICAL BD STUDIES

4.1. General Considerations

Nonclinical studies for BD assessment can be conducted as stand-alone BD studies or in conjunction with nonclinical pharmacology and toxicology studies. Therefore, in this document the term “BD study” represents either scenario. Nonclinical BD study should be performed in a biologically relevant animal species or model (see Section 4.3) following administration of a GT product that is representative of the intended clinical product (see Section 4.2 for possible alternate scenarios). It is important that the route of administration (ROA) reflect the intended clinical  ROA  to  the  extent  possible  and  that  the  dose  levels  studied  provide  sufficient characterisation of the BD profile (see Section 4.5).

It is important to verify the data quality, integrity, and reliability of the BD evaluation. In principle, nonclinical BD studies that are not conducted in compliance with Good Laboratory Practice (GLP) are acceptable. However, when BD evaluation is performed as part of a GLP- compliant toxicology study, it is important that all in-life evaluations and sample collection procedures remain in compliance with GLP. Sample analysis for BD can be conducted in non- GLP manner.

Considerations specific to ex vivo genetically modified cell products are addressed in Section 5.4.

4.2. Test Article

The test article administered in the nonclinical BD studies should be representative of the intended clinical GT product, taking into consideration the manufacturing process, important product  characteristics  (e.g.,  titre),  and  the  final  clinical  formulation.  In  some  situations, nonclinical BD data generated with a GT product consisting of the same vector intended for clinical use and a different therapeutic transgene or an expression marker gene (e.g., adeno- associated  virus  vector  of  the  same  serotype  and  promoter  that  directs  expression  of  a fluorescent marker protein transgene) can be leveraged to support the BD profile (see Section 5.7).

4.3. Animal Species or Model

BD assessment should be conducted in a biologically relevant animal species or model that supports transfer and expression of the genetic material (Note 1). Selection factors can include species differences in tissue tropism of the GT product, gene transfer efficiency, and transgene expression in target and non-target tissues/cells. If working with a replication competent viral vector, it is important that the animal species or model be permissive to vector replication.

The influence of species, sex, age, physiologic condition (e.g., healthy animal vs. animal disease model) on the BD profile can also be important. In addition, the potential for the animal species to mount an immune response against the administered vector and/or expression product should be considered (see Section 5.3).

4.4. Group Size and Sex of Animals

An  appropriate  number  of  animals  per  sex  (as  applicable)  should  be  evaluated  at  each predetermined sampling time point to generate sufficient data that support comprehensive BD assessment (see Note 2). In keeping with the principles of the 3Rs, the total number of animals can be an aggregate from several studies. Justification should be provided for the number of animals evaluated at each time point, as well as the use of combined data from multiple studies, as applicable. Justification should also be provided when only one sex is evaluated.

4.5. Route of Administration and Dose Level Selection

The ROA of the GT product can affect the BD profile, including the cell types that are transduced and the immune response, and therefore, the GT product should be administered using the intended clinical ROA, as feasible (see Note 3).   The selected dose levels of the administered GT product should provide adequate characterisation of the BD profile to aid in interpretation  of  the  pharmacology  and  toxicology  assessments.  The  highest  dose  level evaluated should be the expected maximum dose level in the toxicology studies (usually limited by animal size, ROA/anatomic target, or GT product concentration).   It is important that the dose level for BD evaluation equate to or exceed the anticipated maximum clinical dose level. However, it should not exceed the highest dose level administered in the toxicology study.

4.6. Sample Collection

The sample collection procedure for target and non-target tissues and biofluids should be designed to minimise the potential for contamination. It is important to follow a pre-specified process that includes appropriate retention of the samples obtained from each animal (those that received vehicle control and those administered the GT product), as well as documenting the order of sample collection. Sample collection time points during the nonclinical BD study should be selected to sufficiently characterise the time-related changes in GT product levels over  appropriate  time  points.  Additional  time  points  can  be  included,  as  applicable,  to comprehensively  capture the  length  of the  steady-state  period  or  to  estimate  persistence. Inclusion of time points to permit evaluation of GT product levels after repeat administration should be considered, when applicable.

For replication competent vectors, sample collection time points should also cover the detection of the second peak level due to vector replication and the subsequent clearance phase in relevant sample(s).

The collected samples should include the following panel of tissues/biofluids: injection site(s), gonads, adrenal gland, brain, spinal cord (cervical, thoracic, and lumbar), liver, kidney, lung, heart, spleen, and blood. This panel can be expanded depending on additional considerations, such as vector type/tissue tropism, the expression product, ROA, disease pathophysiology, and animal sex and age. For example, additional tissues/biofluids can include peripheral nerves, dorsal root ganglia, cerebrospinal fluid, vitreous fluid, draining lymph nodes, bone marrow, or eyes and optic nerve. The decision as to the final sample collection panel should be guided by an understanding of the GT product, the target clinical population, the ROA, and existing nonclinical data.

Collected  samples  can  also  be  analysed  for  the  presence  of  the   expression  product. Considerations regarding this assessment are provided in Section 5.2.

5.    SPECIFIC CONSIDERATIONS

5.1. Assay Methodologies

Evaluation  of  the  BD  profile  necessitates   quantifying  the   amount  of  genetic   material (DNA/RNA)  of  the  GT  product  in  tissues/biofluids  and,  if  appropriate,  the  expression product(s). Currently, quantitation of vector genome and/or transgene DNA/RNA relative to input genomic DNA by established nucleic acid amplification methods (e.g., qPCR, digital PCR, etc.) is considered the standard for detection of GT products in tissues/biofluids over the course  of time.  When  cellular  content  varies  significantly  in  a  sample  (e.g.,  biofluids), DNA/RNA  concentration  (e.g.,  copy  number/  microL)  can  be  used.  Spike  and  recovery experiments, considered apart of assay development, should be performed to demonstrate the ability to detect the target nucleic acid sequence in different tissues/biofluids.

Other techniques can be used in nonclinical studies to monitor BD of a vector and/or the expression product(s). These include but are not limited to: enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), western blot, in situ hybridisation (ISH), flow cytometry, various in vivo and ex vivo imaging techniques, and other evolving technologies.

It is important to provide a comprehensive description of the methodology and the justification for  the   technique  used,   including   the   performance   parameters   (e.g.,   sensitivity   and reproducibility) of the method.

5.2. Measurement of Expression Products

While quantification of the genetic material of the GT product is the primary BD assessment (see Section 5.1), determination of the level of the expression product in vector genome positive tissues/biofluids can contribute to characterisation of the safety and activity profiles following GT product administration. Decisions regarding the conduct of such assessments should be based on the extent of nonclinical BD analyses needed for the GT product, which is determined using a risk-based approach. This approach can include consideration of the GT product levels

and persistence in tissues/biofluids; the target clinical population; and potential safety concerns associated with the vector and/or the expression product.

5.3. Immunological Considerations

Pre-existing immunity in animals, notably in non-human primates and other non-rodent species, against  a  GT  product  could  affect  the  BD  profile.  Screening  of animals  for  pre-existing immunity to the vector prior to inclusion in a nonclinical study should be considered. In such situations, it is important that this  aspect is  factored  into the non-biased method used to randomise animals to study groups.

A cell-mediated or humoral immune response to the GT product can occur after administration of the GT product. These responses may result in aBD profile that is not informative. Therefore, the sponsor can consider collecting samples for possible immunogenicity analysis to support interpretation of the BD data.

Immunosuppression  of animals  for  the  sole  purpose  of  evaluating  the  BD  profile  is  not recommended.    However,     if    product-     or     species-specific    circumstances     warrant immunosuppression, justification should be provided.

In certain cases, due to the species-specific nature of the transgene, the animal may mount a cell-mediated or humoral immune response to the expression product(s). If this occurs, use of a species-specific orthologous transgene can be considered to circumvent the effects of the immune response.

5.4. Ex vivo Genetically Modified Cells

Considerations for BD assessment of GT products that consist of ex vivo genetically modified cells  (i.e.,  cells  that  are  transduced/transfected  ex  vivo  and  then  administered  to  the animal/human subject) should include factors such as the cell type, ROA, and the potential for the expression product or gene modification event to affect the expected distribution of the cells within the body (e.g., new or altered expression of cell adhesion molecules). In addition, the occurrence  of  graft  versus  host  disease  in  animals  can  complicate  interpretation  of  BD assessment of genetically modified human T cells. In general, BD assessment of ex vivo genetically modified cells of haematopoietic origin is not critical based on expected widespread distribution following systemic administration. If distribution to a target organ(s)/tissue(s) is expected,  BD  assessment  of  select  tissues   should  be  considered  in   appropriate  animal species/models.

5.5. BD Assessment in Gonadal Tissues

It is important to conduct BD assessment of the administered GT product in the gonads for both sexes unless the target clinical population is restricted to one sex (e.g., for the treatment of prostate cancer or uterine cancer). If the GT product or its genetic material does not indicate persistence by an appropriate analytical method (see Sections 4.6 and 5.1), further evaluation may not be necessary.

Persistent presence of the GT product in the gonads can lead to additional studies to determine GT product levels in germ cells (e.g., oocytes, sperm) or non-germline cells in the animals. These data, as well as other factors (vector type, replication capacity, integration potential, dose level, ROA, etc.), can inform the risk of inadvertent germline integration or germline cell genome modification. Refer to the 2006 ICH Considerations document on inadvertent germline integration of GT vectors (2) for a more comprehensive discussion on this issue.

Persistent GT product detection in non-germline cells in gonadal tissues (e.g., leukocytes, Sertoli cells or Leydig cells) can warrant additional consideration of its potential effect on the function of the affected non-germline cells, particularly if the cell type is important to successful reproduction.

5.6. Triggers for Additional Nonclinical BD Studies

During product development, various circumstances  can necessitate conduct  of additional studies for BD assessment. Examples of possible scenarios are provided below:

•     A significant change in the clinical development programme, such as: a change in the ROA;  an  increase  in  the  GT  product  dose  level  that  significantly  exceeds  the maximum nonclinical dose level tested; changes in the dosing regimen; and inclusion of another  clinical  indication  that  includes  both  sexes  instead  of the  originally proposed  single  sex.  Additional  BD  assessment  can  be  incorporated  into  any additional pharmacology and/or toxicology studies that are performed.

•     A significant change in the vector structure or serotype, or any other modifications that may result in changes in distribution or transgene expression.

•     Changes in the manufacturing process that can affect the final GT product formulation (e.g., addition of excipients that could alter vector tissue tropism) or relevant quality attributes of the GT product (e.g., gene transfer activity, product titre). Other factors to consider about manufacturing changes include vector particle size; aggregation state; antigenicity; and potential interaction with other host components (e.g., serum factors).

5.7. Considerations for Alternative Approaches

Existing BD data obtained from nonclinical studies conducted with the same GT product in support of a different clinical indication can potentially suffice. However, considerations such as the dose level(s), dosing regimen,ROA, and change in promotor will factor into this decision. BD data obtained with a previously characterised GT product that has the same vector structure and other characteristics that determine its tissue tropism, but a different transgene, can also potentially  support  waiving  an  additional  nonclinical  BD  study.  Justification  should  be provided for this approach.

In some cases, a biologically relevant animal species that can inform the BD profile in the clinical population does not exist. For example, when the vector binds to the target molecule on human cells but this target is absent on animal cells. In such circumstances, it is important

to provide a comprehensive discussion of the issue and justification to support an alternative approach to evaluation of nonclinical BD.

6.    APPLICATION OF NONCLINICAL BD STUDIES

Characterisation of the BD profile following administration of a GT product in animals is a critical  component  of  a  nonclinical  development  programme.  The  nonclinical  BD  data contribute to the overall interpretation of the study findings by enabling a better understanding of the relationship of various findings (desired and undesired) to the administered GT product. Attribution of observed findings in animals to the genetic material (DNA/RNA) and/or to the expression product(s) factor into ascertaining a potential benefit: risk profile of the GT product before administration in humans.

It is important to consider the relevancy of the BD data to the clinical population based on factors such as the ROA, dose level(s), dosing regimen, and animal immune response. These data can also inform elements of a first-in-human trial and subsequent clinical trials, such as the dosing procedure (i.e., dosing intervals between subjects), the monitoring plan, and long- term follow-up assessment.

NOTES

1.              For BD assessment,a biologically relevant species or model is one which is anticipated to produce a profile of dose-related GT product tissue distribution and gene product expression  similar to that in humans.  Supporting  data  can be derived from prior nonclinical BD studies conducted with GT products composed of the same vector structure, including the  same element that determines tissue tropism  (e.g., vector capsid) and the transgene promoter of interest, clinical trial data, or peer-reviewed published literature. The supporting data should be from studies where the GT product has been manufactured by a similar process and in which the dose level and ROA are similar to the sponsors’ proposed use. For age-specific consideration in experimental animals, Appendix A of the ICH S11 guideline provides comparative information on organ maturation between species (3).

2.              In  general,  it  is  recommended that a minimum of 5 rodents or 3 non-rodents per sex/group/time point be evaluated. Justification for the number of animals, including number/sex should be provided.

3.              For each delivery device system used, it is important to provide data that verify the volume and dose level of the administered GT product in animals. This information can affect interpretation of the resulting BD profile. If a novel delivery device system is planned for use in clinical trials, consider collecting BD data in conjunction with the pharmacology and/or toxicology studies conducted with the device system or its equiv- alent.

GLOSSARY

BD:

Biodistribution.

Expression products:

Molecules such as RNA and protein, produced in the cells guided by the transferred genetic materials.

Gene therapy (GT) products:

Therapeutic products that mediate their effect by the expression (transcription/translation) of transferred genetic materials, or by specifically altering the target genome of human

cells. This definition is for the purpose of this guideline.

Gene transfer:

Delivery of therapeutic genetic material into the cells using vectors (e.g., transduction for viral vectors and transfection for plasmids).

Persistence:

The continued presence of transferred or modified genetic sequences in the host after acute exposure to a GT product, due either to integration of the genetic sequence into the host genome, deletion, insertion, or otherwise modified following genome editing, to latent infection with the viral vector bearing the transgene, or to the transferred genetic material in episomal form.

ROA:

Route of administration.

Tissue tropism:

For GT products, the propensity of a given vector to transduce or transfect a distinct group of tissues (or cells).

Transgene:

Transcriptionally or translationally active genetic material transferred by a vector intended

to confer biological activity following expression in cells Vectors:

Gene  therapy  delivery  vehicles  or  carriers,  containing  transcriptionally/translationally active therapeutic genetic material or genetic material to alter the host genome that is manufactured to transfer the genetic material into the cells. They include both genetically modified viruses, such as adenovirus oradeno-associated virus, and non-viral vectors, such as plasmids and gene modified microorganisms, and can include targeted nanoparticles which have the capability to transfer genetic materials or gene editing components to the cells.

REFERENCES

1. ICH Considerations: General Principles to Address Virus and Vector Shedding, Jun 2009.

2.  ICH Considerations: General Principles to Address the Risk of Inadvertent Germline Integration of Gene Therapy Vectors, Oct 2006.

3.   ICH Guideline S11: Nonclinical Safety Testing in Support of Development of Paediatric Pharmaceuticals, Apr 2020.

What are your Feelings
Share This Article :
  • Facebook
  • X
  • LinkedIn
  • Pinterest
Still stuck? How can we help?

How can we help?

Updated on March 3, 2025
S11S9

Powered by BetterDocs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Connect

Copyright © 2025 Aibio AB

biopharma.ai
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}