Skip to content
biopharma.ai
  • Home
  • Design
  • Produce
  • Test
  • News
  • Docs
  • Events
    • Webinars
  • About
Contact Us
Contact Us
biopharma.ai
  • Home
  • Design
  • Produce
  • Test
  • News
  • Docs
  • Events
    • Webinars
  • About

Docs

  • ICH guidlines
    • Safety Guidelines
      • S10
      • S11
      • S12
      • S9
      • S8
      • S7B
      • S7A
      • S6(R1)
      • S5(R3)
      • S4
      • S3B
      • S3A
      • S2(R1)
      • S1C(R2)
      • S1B(R1)
      • S1A
View Categories
  • Home
  • Docs
  • Docs
  • ICH guidlines
  • Safety Guidelines
  • S10

S10

56 min read

PHOTOSAFETY EVALUATION OF PHARMACEUTICALS

1.      INTRODUCTION

1.1.   Objectives of the Guideline

The purpose of this document is to recommend international standards for photosafety assessment, and to harmonise such assessments supporting human clinical trials and marketing authorizations for pharmaceuticals.   It includes factors for initiation of and triggers for additional photosafety assessment and should be read in conjunction with ICH M3(R2), Section 14 on Photosafety Testing (Ref. 1).   This guideline should reduce the   likelihood   that    substantial   differences    in   recommendations    for   photosafety assessment will exist among regions.

This guideline is divided into several sections.    Section 2 discusses factors to consider in any evaluation of photosafety.    Section 3 describes existing nonclinical photosafety tests, but this section does not describe specific testing strategies.    Section 4 mentions clinical photosafety assessment.   Section 5 provides strategies for determining how to assess photosafety for drugs given by routes intended to produce systemic exposure or by the dermal route using the considerations and tests described in Sections 2, 3 and 4.

Consideration should be  given to the use of non-animal  methods or clinical data for photosafety assessment which could reduce the use of animals in accordance with the 3R (Replacement/Reduction/Refinement) principles.

1.2.   Background

The  ICH  M3(R2)  Guideline  provides  certain  information  regarding  timing  of  the photosafety assessment relative to clinical development.   It recommends that an initial assessment of phototoxicity potential be conducted, and if appropriate, an experimental evaluation  be  undertaken  before  exposure  of  large  numbers  of  subjects  (Phase   3). Similarly, the ICH S9 Guideline (Ref. 2) describes the timing of photosafety testing for oncology  products.     However,   neither  ICH  M3(R2)  nor  ICH   S9  provides  specific information  regarding  testing  strategies.     This  ICH  S10  Guideline  outlines  further details on when photosafety testing is warranted, and on possible assessment strategies.

1.3.   Scope of the Guideline

This guideline generally applies to new Active Pharmaceutical Ingredients (APIs), new excipients clinical formulations for dermal application (including dermal patches), and photodynamic therapy products.

Specific guidance for pharmaceuticals given via ocular routes is not provided because the reliability of in vitro approaches in predicting ocular phototoxicity is unknown and there are  no  standardised  in vivo approaches  for  assessing  phototoxicity  for  products administered via the ocular routes (see Note 1).

Photodynamic therapy drugs are developed with photochemical reactivity as an inherent aspect of their intended pharmacology and additional assessment of their phototoxicity is not  usually  warranted.     However,   an  evaluation  of  the   toxicokinetics  and  tissue distribution  of photodynamic  therapy  drugs  is  warranted  to  enable  appropriate  risk management in patients.

This guideline does not generally apply to peptides, proteins, antibody drug conjugates, or oligonucleotides.    Further,  this  guideline  does  not  apply  to  components  of  marketed

products unless there is a new cause for concern for either the API or an excipient (e.g., a reformulation from a tablet to a topical cream).

1.4.   General Principles

The photosafety assessment of a pharmaceutical is an integrated process that can involve an evaluation of photochemical characteristics, data from nonclinical studies and human safety  information.     The  photosafety  assessment  aims  to  determine  whether  risk minimization measures are warranted to prevent adverse events in humans.

Four  different  effects  have  been   discussed  in   connection  with  photosafety  testing: phototoxicity,  photoallergy,  photogenotoxicity   and  photocarcinogenicity.     Testing  for photogenotoxicity  (Note  2)  and  photocarcinogenicity  (Note  6  of  ICH  M3  (R2))  is  not currently considered useful for human pharmaceuticals.   This guideline addresses only phototoxicity and photoallergy effects as defined below:

●    Phototoxicity   (photoirritation):     An  acute  light-induced  tissue  response  to   a photoreactive chemical.

●    Photoallergy:    An immunologically mediated reaction to a chemical, initiated by the formation of photoproducts (e.g., protein adducts) following a photochemical reaction.

Photosensitization is a general term occasionally used to describe all light-induced tissue reactions.      However,   in   order   to   clearly   distinguish   between   photoallergy   and phototoxicity, the term photosensitization is not used in this guideline.

For   a   chemical   to   demonstrate   phototoxicity   and/or   photoallergy,   the   following characteristics are critical:

●    Absorbs light within the range of natural sunlight (290-700 nm);

●    Generates a reactive species following absorption of UV-visible light;

●    Distributes sufficiently to light-exposed tissues (e.g., skin, eye).

If one or more of these conditions is not met, a compound will usually not present a concern for direct phototoxicity.    However, increased sensitivity of skin to light can also occur through indirect mechanisms.   Such mechanisms are not generally addressed by the testing outlined in this guideline (see also Section 2.4).

2.      FACTORS TO CONSIDER IN THE PHOTOSAFETY EVALUATION

2.1.  Photochemical Properties

The initial consideration for assessment of photoreactive potential is whether a compound absorbs photons at any wavelength between 290 and 700 nm.    A compound that does not have  a  Molar  Extinction  Coefficient  (MEC)  greater  than   1000  L  mol-1    cm-1   at  any wavelength  between  290  and   700  nm   (Ref.  3)  is  not  considered  to  be  sufficiently photoreactive to result in direct phototoxicity (see Note 3 for further details).

Excitation of molecules by light can lead to generation of Reactive Oxygen Species (ROS), including  superoxide  anion   and   singlet  oxygen  via energy  transfer  mechanisms. Although  photoreactivity  can  result  in  other  molecular  outcomes  (e.g.,  formation  of photoadducts or cytotoxic photoproducts), even in these cases, it appears that ROS are typically generated as well.    Thus, ROS generation following irradiation with UV-visible light can be an indicator of phototoxicity potential.

Photostability  testing  (Ref.  4)  can  also  suggest  the  potential  for  photoreactivity. However,  not  all  photoreactive  compounds  are  detected  under  these  conditions,  and

Photosafety Evaluation of Pharmaceuticals

photodegradation per se does  not  imply  that  a  drug  will  be  phototoxic.    Therefore, photostability testing alone should not be used to determine whether further photosafety evaluation is warranted.

Assessments  of  photochemical  properties  should  be  conducted  using  high-quality scientific standards with data collection records readily available, or in compliance with Good Laboratory Practices/Good Manufacturing Practices (GLP/GMP) regulations.

2.2.  Tissue Distribution/Pharmacokinetics

The concentration of a photoreactive chemical in tissue at the time of light exposure is a very important pharmacokinetic parameter in determining whether a phototoxic reaction will  occur.     This  concentration  depends  on  a  variety  of  factors,   such  as  plasma concentration,  perfusion  of  the  tissue,  partitioning  from  vascular  to  interstitial  and cellular compartments, and binding, retention, and accumulation of the chemical in the tissue.   The duration of exposure depends upon clearance rates as reflected by half lives in plasma and tissue.   Collectively, these parameters define the mean residence time of the photoreactive chemical in tissue.

Binding,  retention,  or  accumulation  of  a  compound  in  a  tissue  is  not  critical  for  a phototoxic  reaction.    If  a  molecule  is  sufficiently  photoreactive,  it  might  produce  a phototoxic  reaction  at  the  concentration  achieved  in  plasma  or  interstitial  fluid. However, compounds having longer half-lives in plasma, longer mean residence time in sun-exposed tissues or with higher tissue to plasma concentration ratios are more likely to produce a phototoxic reaction than compounds with shorter half-lives, residence times or lower tissue to plasma ratios.    Further, the longer the concentration of a compound is maintained at a level above that critical for a photochemical reaction, the longer a person is at risk for phototoxicity.

Although a tissue concentration threshold below which the risk for phototoxic reactions would be negligible is scientifically plausible, there are currently no data to delineate such generic thresholds for all compounds.   Nevertheless, on a case-by-case basis it can be possible to justify that further photosafety assessment is not warranted based upon actual or anticipated tissue drug levels in humans, and taking into consideration the factors discussed above.   Examples could include: 1) a drug for which overall systemic exposure levels are very low, or 2) a drug with a very short plasma half-life or tissue residence.

Compound binding to tissue components (e.g., melanin, keratin) is one mechanism by which tissue retention and/or accumulation can occur.   Although  melanin binding can increase tissue levels, experience with melanin binding drugs suggests such binding alone does not present a photosafety concern.

A single-dose tissue distribution study, with animals assessed at multiple timepoints after dosing, will generally provide an adequate assessment of relative tissue to plasma concentration   ratios,   tissue   residence   time   and   the   potential   for   retention   and accumulation.   Assessment time points should be appropriately spaced in such a study to account for the drug half-life.

Compounds  activated  by  visible  light   and  exhibiting  long  elimination  half-lives  in internal tissues have been demonstrated to cause injury to those tissues if exposed to intense light during medical procedures.   Consequently, for those compounds activated by visible light with potent invivo phototoxicity or known to be phototoxic based on their mechanism  of  action,  such  as  photodynamic  therapy  drugs,  distribution  to  internal tissues should be measured and tissue-specific half-lives estimated.   Drugs  that  only absorb UV light or have short tissue elimination half-lives are not likely to present a risk to internal tissues even if they are known to be photoreactive.

2.3.  Metabolite Considerations

Metabolites generally do not warrant separate photosafety assessments, as metabolism does not typically result in chromophores that are substantially different from those in the parent molecule.

2.4.  Pharmacological Properties

In many cases, drug-induced phototoxicity is due to the chemical structure and not to the pharmacology.    However,  certain  pharmacologic  properties  (e.g.,  immunosuppression, perturbation of heme homeostasis) can enhance susceptibility to light-induced effects, such  as  skin  irritation  or  UV-induced  skin  tumor  formation.    The  testing  strategies outlined in this document are not designed to detect these types of indirect mechanisms. Some of these indirect mechanisms can be identified and evaluated in other nonclinical pharmacology/toxicity   testing;   however,   phototoxicity   related   to   other   indirect mechanisms might only become apparent with human experience.

3.      NONCLINICAL PHOTOSAFETY TESTS

3.1.   General Considerations

Carefully selected conditions that consider both the model system and exposure to a relevant radiation spectrum are critical for nonclinical photosafety testing.   Ideally,  a nonclinical  assay  should  exhibit  both  high  sensitivity  and  specificity  (i.e.,  low  false negative and low false positive rates).   However, to support the assessment strategies described in this document, it is most important that nonclinical photosafety assays show high  sensitivity  resulting in  a  low frequency of false negatives  (i.e.,  a  high  negative predictive value).   This is because negative assay results usually do not warrant further photosafety evaluation.   The available nonclinical assays, both in vitro and in vivo, are focused primarily on detecting potential phototoxicity, which might or might not translate into clinically relevant phototoxicity.

Selection of irradiation conditions is critical for both invitro and invivo assays.   Natural sunlight represents the broadest range of light exposure that humans might be exposed to regularly.   However, sunlight perse is not well defined and depends on many factors, such as latitude, altitude, season, time of day, and weather.   In addition, sensitivity of human skin to natural sunlight depends on a number of individual factors (e.g., skin type, anatomical site and tanning status).   Standardized sunlight exposure conditions have been  defined  by  various  organizations.     Such   standards   (e.g.,  Ref.   5)  should  be considered  in  order  to  assess   suitability  of  a  sunlight  simulator  light  source,  and irradiance  and irradiation  dose  should be  normalized based  on the UVA  part of the applied  spectrum.    UVA  doses  ranging  from  5  to  20  J/cm2    are  successfully  used  in current in vitro and in vivo phototoxicity assays.    These UVA doses are comparable to those obtained during prolonged outdoor activities on summer days around noon time, in temperate  zones,  and  at  sea  level.     In  humans,  sunburn  reactions  caused  by  UVB normally limit total sunlight exposure.    In nonclinical phototoxicity assays, however, the amount  of  UVB  should  not  limit  the  overall  irradiation  and  might  be  attenuated (partially filtered)  so that relevant UVA  doses can be tested without reducing assay sensitivity.    Penetration   of  UVB   light  into  human   skin  is   mainly   limited  to  the epidermis,  while  UVA  can   reach  capillary  blood.     Therefore,  clinical  relevance  of photochemical activation by UVB is considered less important than activation by UVA for systemic drugs.   However, UVB irradiation is relevant for topical formulations applied to light-exposed tissues.

The   selection   and   monitoring   of  appropriate  light   sources   (spectral   distribution, irradiance, and dose) and the procedures used should be clearly described in the study methodology (e.g., Ref. 6).

3.2.  Photoreactivity Tests Using Chemical Assays

If a drug developer chooses to assess photoreactivity, the assay should be qualified using pharmaceutical agents under appropriate conditions to demonstrate assay sensitivity. One such assay is a ROS assay (e.g., Ref. 7).   Data suggest that this assay has high sensitivity for predicting direct invivo phototoxicants.   However, it has a low specificity, generating a high percentage of false positive results.   A negative result in this assay, conducted under the appropriate conditions, would indicate a very low probability of phototoxicity, provided a test concentration of 200 µM can be achieved, whereas a positive result (at any concentration) would only be a flag for follow-up assessment.

3.3.  Phototoxicity Tests Using invitro Assays

A number of invitro assays have been developed for assessing the phototoxicity potential of   chemicals.       Some   of   these    assays   have    not   been    qualified   for   use    with pharmaceuticals.    Some  assays  involve  testing  compounds  that  are  dissolved  in  the culture medium, and such methods are often appropriate for the active ingredient or excipients in drug products, depending on their solubility.   Other assays involve direct application to the surface of a tissue preparation and can be appropriate for testing entire formulations intended to be administered topically.

The most widely used in vitro assay for phototoxicity is the 3T3 Neutral Red Uptake Phototoxicity Test (3T3 NRU-PT) for which an Organisation for Economic Co-operation and Development (OECD) guideline (Ref. 6) is available.   This is currently considered the most appropriate invitro screen for soluble compounds.

Although  the  formal  European  Centre  for  the  Validation  of  Alternative  Methods (ECVAM) validation exercise conducted on this assay indicated a sensitivity of 93% and a specificity of 84%, experience within the pharmaceutical industry suggests a much lower specificity.     The   original   OECD   protocol   was   not   validated   for   pharmaceuticals specifically.   Thus, some modifications to the original OECD protocol have been proposed to  address  the  low  specificity  observed  with  drug  substances  (see  Note  4).     These proposed changes are appropriate for the testing of pharmaceuticals.    The sensitivity of the 3T3 NRU-PT is high and if a compound is negative in this assay it would have a very low probability of being phototoxic in humans.   However, a positive result in the 3T3 NRU-PT should not be regarded as indicative of a likely clinical phototoxic risk, but rather a flag for follow-up assessment.

The BALB/c 3T3 cell line is sensitive to UVB and the initially recommended irradiation  conditions (Ref. 6) involve the use of filters to  attenuate wavelengths below  320 nm.  However, depending on the light source and filters used, the ratio of UVB to UVA can be  adjusted  such  that  it  is  possible  to  assess  UVB-induced  phototoxicity  in  this  test.  UVB-induced  phototoxicity  is  rarely  a  problem  for  pharmaceuticals  with  systemic  exposure   since    UVB    minimally   penetrates    beyond    the   epidermis.        However,  UVB-induced phototoxicity is  more relevant for topical products.   For components of topically applied products that absorb predominately in the UVB range, and where in vitro assessment  is  desired,  the  use  of  the  3T3  NRU-PT  with  modified  irradiation  conditions  (see  above) can be considered.   Alternatively,  in vitro skin  models,  which  better tolerate UVB, could be considered.

Reconstructed human  skin  models,  with  the  presence  of  a  stratum  corneum,  permit testing of various types of topically applied materials ranging from neat chemicals to final

Photosafety Evaluation of Pharmaceuticals                                                                                                                       

clinical formulations.   The  assays  developed  with  reconstructed  human  skin  to  date measure cell viability with and without irradiation.   These assays appear to be capable of detecting known human acute dermal phototoxicants.   However, the sensitivity of some  assays  can  be  less  than  that  of  human   skin  in vivo,   wherein  the  lowest concentration eliciting a positive response can be higher than in human skin in vivo. Consequently, it is important to understand the sensitivity of any assay selected and, if appropriate and feasible, to adjust the assay conditions accordingly (e.g., testing higher strength formulations, increasing exposure time).

There are no invitro models that specifically assess ocular phototoxicity, regardless of the route of administration.   While negative results in the 3T3 NRU-PT or a reconstructed human skin assay might suggest a low risk, the predictive value of these assays for ocular phototoxicity is unknown.

3.4.  Photosafety Tests Using invivo Assays and Systemic Administration

Phototoxicity testing for systemically administered compounds has been conducted in a variety of species, including guinea pig, mouse, and rat.    No standardized study design has been established and thus the following factors might be considered as best practices. For species selection, irradiation sensitivity (i.e., minimal erythema dose), heat tolerance, and  performance  of  reference  substances  should  be  considered.     Models  with  both pigmented  and  non-pigmented  animals  are  available.    Although  non-pigmented  skin tends to be more sensitive than pigmented skin for detecting phototoxicity, pigmented skin should be considered for APIs that bind significantly to melanin (see Section 2.2) if appropriate exposures in target tissues cannot be ensured otherwise.

If an in vivo phototoxicity study is conducted, it is desirable to have some information about the pharmacokinetic profile of the compound before designing the study.    This is to ensure that irradiation of the animals is conducted at the approximate Tmax  and to assist in the  selection of an appropriate  study  duration  in relation to the intended clinical exposure.   Relevant pharmacokinetic data, if not already available, should be collected as part of the invivo phototoxicity study.

Although phototoxicity is typically an acute reaction, the duration of an in vivo assay should be carefully considered.   Accumulation  of  compound  in  relevant  light-exposed  tissues after repeated administration might lead to an increased phototoxic response.  Similarly, repeated irradiation after each dose might also lead to an increased phototoxic  response due to the accumulation of damage.    Generally, studies of a single day or up to  a few days’ duration of dosing are appropriate, using the clinical route of administration,  if feasible.   Single or repeated daily irradiations after dosing (around Tmax) can be used.    Dose  selection  for  in vivo nonclinical  phototoxicity  testing  of  systemic  drugs  should  support a meaningful human risk assessment.   For such studies a maximum dose level  that  complies with  the recommendations  for  general  toxicity  studies  in  ICH  M3(R2)  Section 1.5 is considered appropriate.   If a negative result is obtained at the maximum  dose, testing of lower doses is usually not warranted.   However, if a positive result is  anticipated,  additional  dose  groups  can  support  a  NOAEL-based  risk  assessment,  typically considering Cmax   comparisons.   Vehicle  and  non-irradiated  controls  can  help  identify   compound-related   phototoxicity    and   distinguish   irradiation-induced   from  non-irradiation-induced adverse reactions.   If the maximum systemic exposure achieved  in animals is lower than clinical exposure, the reliability of a negative result in predicting  human risk is questionable.                                                                                                         

The most sensitive early signs of compound-induced phototoxicity are usually erythema followed  by  edema  at  a  normally  sub-erythemogenic  irradiation  dose.     The  type  of response might vary with the compound.   Any identified phototoxicity reaction should be

Photosafety Evaluation of Pharmaceuticals

evaluated regarding dose and time dependency and, if possible, the No Observed Adverse Effect Level (NOAEL) should be established.    The hazard identification might be further supported by additional endpoints (e.g., early inflammatory markers in skin or lymph node reactions indicative of acute irritation).

If a phototoxicity study is conducted in animals for a systemic drug that absorbs light above  400  nm,  phototoxicity  of  the  retina  should  be  assessed  using  a  detailed histopathological  evaluation.    For  compounds  that  only  absorb  light  below  400  nm, retinal assessment is usually not warranted because such wavelengths do not reach the retina of the adult human eye due to limited penetration of the cornea, lens and vitreous body.

Adequate performance of in vivo phototoxicity assays, which are not formally validated, should be demonstrated using suitable reference compounds, including pharmaceuticals. Compounds that are phototoxic in humans and that represent different chemical classes and mechanisms of phototoxicity should be included to establish adequacy of the assays. For retinal phototoxicity, a reference compound with a light absorption profile within the visible light range (i.e., above 400 nm) is recommended.    The concurrent use of a positive control compound might not be warranted if an invivo assay has been formally validated or has reached general acceptance and is established in the testing facility.

Testing  for  photoallergy  is  not  recommended  for  compounds  that  are  administered systemically.   Photoallergy reactions in humans following systemic administration are rare  and  there  are  no   established  nonclinical  photoallergy   assays  for   systemically administered compounds.

3.5.  Photosafety Tests Using invivo Assays and Dermal Administration

The   main    recommendations    provided   for    investigating   the    systemic    route   of administration also apply to dermal administration, including those for species selection, study duration, and irradiation conditions.   For dermal drug products in general, the clinical formulation should be tested.    The intended clinical conditions of administration should be used to the extent possible.    Irradiation of the exposed area should take place at a specified time after application, and the interval between application and irradiation should be justified based on the specific properties of the formulation to be tested.    Signs of phototoxicity should be assessed based on relevant endpoints (see Section 3.4).   The sensitivity of the assay should be demonstrated using appropriate reference compounds. Assessment of systemic drug levels is generally not warranted in dermal phototoxicity studies.

For dermal drug products, contact photoallergy has often been assessed in a nonclinical study along with acute phototoxicity (photoirritation).    However, no formal validation of such  assays  has been performed.   While  the  acute  photoirritation  observed  in  these studies is considered relevant to humans, the predictivity of these studies for human photoallergy is unknown.    For regulatory purposes, such nonclinical photoallergy testing is generally not recommended.

4.   CLINICAL PHOTOSAFETY ASSESSMENT

There are various options for collecting human data, if warranted, ranging from standard reporting of adverse events in clinical studies to a dedicated clinical photosafety trial. The precise strategy is determined on a case-by-case basis.

5.  ASSESSMENT STRATEGIES

The choice of the photosafety assessment strategy is up to the drug developer.   ICH M3(R2)  suggests  that  an  initial  assessment  of  the  phototoxicity  potential  based  on

photochemical  properties  and  pharmacological/chemical  class  be  undertaken  before outpatient   studies.      Characterization   of   the   UV-visible    absorption   spectrum   is recommended as the initial assessment because it can obviate any further photosafety evaluation.   In addition, the distribution to skin and eye can be evaluated to inform further  on  the  human  risk  and  the  recommendations  for  further  testing.     Then,  if appropriate, an experimental evaluation of phototoxicity potential (in vitroor in vivo, or clinical) should be undertaken before exposure of large numbers of subjects (Phase 3).

Figure 1 provides an outline of possible phototoxicity assessment strategies.    The figure is based on the strategies outlined in this section of this document.   The strategies are flexible.   Depending  on  the  particular situation,  some portions of the assessment are optional and might not be conducted.

Figure  1.  Outline  of possible  phototoxicity  assessment  strategies for pharmaceuticals   given via systemic and dermal routes

*    “otherwise”: data do not support a low potential for phototoxicity or have not been generated (assay/test/evaluation not conducted)

#    A  “negative” result in an appropriately conducted in vivo phototoxicity  study supersedes a positive in vitro result.    A  robust  clinical  phototoxicity  assessment  indicating  no  concern supersedes any positive nonclinical results.    A positive result in an in vitro phototoxicity test could also, on a case-by-case basis, be negated by tissue distribution data (see text).   In the United States, for products applied dermally, a dedicated clinical trial for phototoxicity on the to-be-marketed formulation can be warranted in support of product approval.

$    Clinical evaluation could range from standard reporting of adverse events in clinical studies to a dedicated clinical photosafety trial.

§    Tissue distribution is not a consideration for the phototoxicity of dermal products.

5.1.  Recommendations for Pharmaceuticals Given via Systemic Routes

5.1.1 Assessment of Phototoxicity Potential

If the substance does not have a MEC greater than 1000 L mol-1  cm-1   (between 290 and 700 nm), no photosafety testing is recommended and no direct phototoxicity is anticipated in humans.   However, it should be noted that phototoxicity by indirect mechanisms (e.g., pseudoporphyria or porphyria), although rare, could still occur.   For compounds with MEC values of 1000 L mol-1  cm-1  or higher, if the drug developer chooses to conduct a test for photoreactivity a negative result could support a decision that no further photosafety assessment  is  warranted  (see  Section  3.2).     Otherwise,  nonclinical  and/or  clinical photosafety assessment of the substance should be conducted.   Available  data  on  the phototoxicity  of chemical  class-related  compounds  should  be  evaluated  as  this  could inform on the approach to be taken.

5.1.2 Experimental Evaluation of Phototoxicity

In order to reduce the use of animals in accordance with the 3R principles, a validated in vitro method should generally be considered before conducting animal testing (e.g., see  Directive  2010/63/EU).   If the  drug  developer chooses  an in vitro approach, the  3T3  NRU-PT is currently the most widely used assay and in many cases could be considered  as an initial test for phototoxicity.   The high sensitivity of the 3T3 NRU-PT results in  good  negative  predictivity,  and  negative  results  are  generally  accepted  as  sufficient  evidence  that  a  substance  is  not  phototoxic.     In  such  cases  no  further  testing  is  recommended and no direct phototoxicity is anticipated in humans.

In some situations (e.g., poorly soluble compounds) an initial assessment of phototoxicity in an invitro assay might not be appropriate.    In this case, an assessment in animals or in humans could be considered.   Alternatively, if drug distribution  data  are available, they  could,  on  a  case-by-case  basis,  support  a  decision  that  no  further  photosafety assessment is warranted (see Section 2.2).

If an in vitro phototoxicity assay gives a positive result, a phototoxicity study in animals  could  be  conducted  to  assess  whether  the  potential  phototoxicity  identified  in vitro correlates with a response in vivo.   Alternatively,  drug  distribution  data  could,  on  a  case-by-case basis, support a position that the risk of phototoxicity invivo is very low and  that  no  further  photosafety  assessment  is  warranted  (see  Section  2.2).    As  another  option, the photosafety risk could be assessed in the clinical setting, or managed by the  use  of  light-protective  measures.     A  negative  result  in  an  appropriately  conducted  phototoxicity study either in animals or humans supersedes a positive invitro result.    In  such cases no further testing is recommended and no direct phototoxicity is anticipated in  humans.

A positive result in an in vivo animal study can, in certain circumstances, be mitigated using   a   NOAEL-based   risk   assessment,   typically   considering   Cmax      comparisons. Otherwise,   a   clinical   assessment   is   warranted.      In   all   cases   a   robust   clinical phototoxicity  assessment  indicating   no  concern   supersedes  any  positive  nonclinical results.

A positive result in an invitro phototoxicity test would not be negated by a negative result in a subsequently conducted chemical photoreactivity assay (e.g., a ROS assay).

In cases where an animal or clinical phototoxicity study has already been conducted,  there is no reason to subsequently conduct either a chemical photoreactivity or an invitro phototoxicity assay.

5.2.  Recommendations for Pharmaceuticals Given via Dermal Routes

5.2.1 Assessment of Phototoxicity Potential

If the active substance and excipients do not have MEC values greater than 1000 L mol-1 cm-1  (between 290 and 700 nm), no further photosafety testing is recommended and no phototoxicity is anticipated in humans.    For compounds with MEC values of 1000 L mol-1 cm-1  or higher, negative photoreactivity test results (e.g., a ROS assay) can support a decision that no further photosafety assessment is warranted (see Note 5 for exception). If further  assessment  is  warranted,  available  data  on  the  phototoxicity  of  chemical class-related compounds should be evaluated, as this could inform on the approach to be taken.

Tissue  distribution  is  not  a  consideration  for  the  phototoxicity  of  dermal  products. Dermal products are administered directly to the skin and hence, unless they are applied to areas not usually exposed to light, are assumed to be present in light-exposed tissues.

5.2.2  Experimental Evaluation of Phototoxicity and Photoallergy

The 3T3 NRU-PT can be used to assess individually the phototoxicity potential of the API and any new excipient(s), provided that appropriate testing conditions can be achieved (e.g.,  test  concentrations  not  limited  by  poor  solubility,  relevant  UVB  dose  can  be applied).    In  cases  where  no  phototoxic  component  has  been  identified  in vitro,  the overall phototoxicity potential of the clinical formulation can be regarded as low.

Some properties of the clinical formulation that could influence the potential phototoxic response (e.g., penetration into skin, intracellular uptake) cannot be evaluated using the 3T3  NRU-PT  alone.    Therefore,  confirmation  of  the  overall  negative  result  in   an evaluation using the clinical formulation and/or monitoring during clinical trials can still be warranted.

Reconstructed human skin models can be used to assess the phototoxicity potential of clinical formulations.   Under adequate test conditions (see Section 3.3), a negative result in a reconstructed human skin assay indicates that the direct phototoxicity potential of the formulation can be regarded as low.    In this case, generally no further phototoxicity testing is recommended (see Note 5 for exception).

If an appropriate in vitro assay is not  available, the initial test could be an in vivo phototoxicity test on the clinical formulation.   A  negative  result  in  an  appropriately  conducted in vivo animal  phototoxicity  study  would  be  sufficient  evidence  that  the  formulation   is   not    directly   phototoxic    and   no   further    phototoxicity   testing    is  recommended (see Note 5 for exception).   Alternatively, the phototoxicity potential can  be assessed in the clinical setting.

For dermal products where the API or any new excipient has a MEC value greater than 1000 L mol-1  cm-1  at any wavelength between 290 and 700 nm, a photoallergy assessment is  generally  warranted  in  addition  to  phototoxicity  testing.     As  the  predictivity  of nonclinical photoallergy tests is unknown, this would typically be a clinical assessment using the to-be-marketed formulation and conducted during Phase 3.

Photosafety evaluation of the clinical formulation delivered via dermal patches can follow the  above  described  principles  for  clinical  dermal  formulations.     For  transdermal patches,  the  principles  for  both  dermal  and  systemic  drugs  should  be  applied.     In addition, the intended clinical use  (e.g.,  skin  area recommended  for use,  duration  of application) and the properties of the patch matrix (e.g., being opaque to UV and visible light) should be considered for the overall risk assessment.

6.      ENDNOTES

Note 1  For compounds that absorb at relevant wavelengths, have a MEC value greater than  1000  L  mol-1    cm-1,  and  are  given  via ocular  routes   (e.g.,  eye  drops, intraocular injections), an evaluation of the phototoxicity potential should be undertaken   in   accordance    with   the    general   principles    of   phototoxicity assessment.   Biodistribution of drug in the eye, and optical properties of the eye should  also  be  considered.    Any  available  information  on  the  compound  or chemical   class-related   compounds    should   be    considered   in    the   overall assessment.

Compounds that only absorb light at wavelengths below 400 nm and are to be administered as intraocular injections behind the lens (e.g., in the vitreous) are of low concern for retinal phototoxicity, as only light of wavelengths greater than 400 nm reaches the back of the adult eye.    However, the lens in children of less than  approximately  10  years  of  age  is  not  completely  protective  against wavelengths below 400 nm.

Note2  Testing for photogenotoxicity is not recommended as a part of the  standard photosafety  testing  program.     In  the  past,   some  regional   guidelines   (e.g., CPMP/SWP/398/01)   have   recommended   that   photogenotoxicity   testing   be conducted,   preferentially   using   a   photoclastogenicity   assay   (chromosomal aberration  or  micronucleus  test)  in  mammalian  cells  in vitro.     However, experience with these models since the CPMP/SWP guideline was issued has indicated that these tests are substantially oversensitive and even incidences of pseudo-photoclastogenicity  have  been  reported   (Ref.   8).     Furthermore,  the interpretation  of  photogenotoxicity  data  regarding  its  meaning  for  clinically relevant enhancement of UV-mediated skin cancer is unclear.

Note3  Standardized conditions for determination of the MECs are critical.    Selection of an adequate solvent is driven by both analytical requirements (e.g., dissolving power,  UV-visible  light  transparency)  and  physiological  relevance  (e.g.,  pH 7.4-buffered  aqueous  conditions).    Methanol  is  recommended  as  a  preferred solvent and was used to support the MEC threshold of 1000 L mol-1  cm-1  (Ref. 3). When measuring UV-visible light spectra, potential limitations (e.g., artifacts due to high concentrations or low solubility, including slow precipitation) should be considered.   If the chromophore of the molecule appears to be pH-sensitive (e.g., phenolic structure, aromatic amines, carboxylic acids, etc.) an additional spectrum  obtained  under  aqueous,  pH  7.4-buffered  conditions,  could  add valuable  information  regarding   differences  in  the   shape  of  the   absorption spectrum  and  in  the  MECs.     If  significant   differences  are  seen  between measurements obtained in methanol versus pH-adjusted conditions, the MEC threshold of 1000 L mol-1   cm-1   cannot be used to  obviate further photosafety assessment.

Note4  A  survey  of  pharmaceutical  companies  indicated  that  the  3T3  NRU-PT,  as described in  Organisation for  Economic  Co-operation  and  Development,  Test Guideline  (OECD  TG)  432,  generates  a  high  percentage  of  positive  results (approximately 50%), the majority of which do not correlate with phototoxicity responses in animals or humans (Ref. 9).   Following a retrospective review of data for pharmaceuticals, a reduction of the maximum test concentration from 1000  to  100  µg/mL  appears  justified   (Ref.  10).     Compounds  without  any significant cytotoxicity (under irradiation) up to this limit can be considered as being  devoid  of  relevant   phototoxicity.     In  addition,  the  category  named “probable phototoxicity” per OECD TG 432 (i.e., Photo Irritation Factor (PIF)

values between 2 and 5 or Mean Photo Effect (MPE) values between 0.10 and 0.15) is of questionable toxicological relevance for systemic drugs.    Compounds in this category generally do not warrant further photosafety evaluations.   For compounds with a PIF value between 2 and 5, and for which it is not possible to determine an IC50  in the absence of irradiation, it is important to check that the compound is not classified as positive using the MPE calculation, i.e., that the MPE is less than 0.15.

Systemic  drugs  that  are  positive  in  the  3T3  NRU-PT  only  at  in vitro concentrations that are many times higher than drug concentrations likely to be  achieved in light-exposed tissues in humans, can, on a case-by-case basis, and in  consultation  with  regulatory  authorities,  be  considered  to  be  ‘low  risk’  for  phototoxicity in humans , without follow-up invivo testing.

Note5  In the United States, for products applied dermally, a dedicated clinical trial for phototoxicity (photoirritation) on the to-be-marketed formulation (API plus all excipients) can be warranted in support of product approval.

What are your Feelings
Share This Article :
  • Facebook
  • X
  • LinkedIn
  • Pinterest
Still stuck? How can we help?

How can we help?

Updated on March 3, 2025
S11

Powered by BetterDocs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Connect

Copyright © 2025 Aibio AB

biopharma.ai
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}