Skip to content
biopharma.ai
  • Home
  • Design
  • Produce
  • Test
  • News
  • Docs
  • Events
    • Webinars
  • About
Contact Us
Contact Us
biopharma.ai
  • Home
  • Design
  • Produce
  • Test
  • News
  • Docs
  • Events
    • Webinars
  • About

Docs

  • ICH guidlines
    • Safety Guidelines
      • S10
      • S11
      • S12
      • S9
      • S8
      • S7B
      • S7A
      • S6(R1)
      • S5(R3)
      • S4
      • S3B
      • S3A
      • S2(R1)
      • S1C(R2)
      • S1B(R1)
      • S1A
View Categories
  • Home
  • Docs
  • Docs
  • ICH guidlines
  • Safety Guidelines
  • S8

S8

41 min read

IMMUNOTOXICITY STUDIES FOR HUMAN PHARMACEUTICALS

1.         INTRODUCTION

1.1      Objectives of the Guideline

The  objectives  of this  guideline  are  to  provide  (1)  recommendations  on  nonclinical testing   approaches   to   identify   compounds   which   have   the    potential   to   be immunotoxic, and (2) guidance on a weight-of-evidence decision making approach for immunotoxicity testing. Immunotoxicity is, for the purpose of this guideline, defined as  unintended  immunosuppression  or  enhancement.  Drug-induced  hypersensitivity and autoimmunity are excluded.

1.2      Background

Evaluation  of potential  adverse  effects  of human  pharmaceuticals  on  the  immune system  should  be  incorporated  into  standard  drug  development.  Toxicity  to  the immune system encompasses a variety of adverse effects. These include suppression or enhancement of the immune response.  Suppression of the immune response can lead to decreased host resistance to infectious agents or tumor cells. Enhancing the immune response can exaggerate autoimmune diseases or hypersensitivity. Drug or drug-protein adducts might also be recognized as foreign and stimulate an anti-drug response.  Subsequent  exposures  to  the  drug  can  lead  to  hypersensitivity  (allergic) reactions. Much of the science and method development and validation efforts in the past have been focused on evaluating drug development candidates for their potential for  either immunosuppression  or contact  sensitization. No  standard  approaches for human pharmaceuticals are currently available for testing for respiratory or systemic allergenicity (antigenicity) or drug-specific autoimmunity; testing for these endpoints is not currently required in any region.   There are no regional differences in testing approaches of skin sensitization.

Immunosuppression or enhancement can be associated with two distinct groups:

1)        Drugs  intended  to  modulate  immune  function  for  therapeutic  purposes (e.g.,     to     prevent     organ     transplant     rejection)     where     adverse immunosuppression can be considered exaggerated pharmacodynamics;

2)        Drugs  not intended  to  affect  immune function but  cause immunotoxicity due, for instance, to  necrosis  or  apoptosis  of immune  cells  or interaction with  cellular  receptors   shared  by  both  target  tissues   and  non-target immune system cells.

Anti-proliferative agents used to treat cancer are an example of drugs that produce unintended  immunosuppression.  In  such  instances,  adverse  findings  in  nonclinical studies are predictive of human immunotoxicity in a rather straightforward manner. That  is,  specific  assays  to  determine  immunotoxicity  are  probably  not  valuable  in drug risk assessment since the target tissues are usually rapidly dividing cell types, such  as  bone  marrow-derived  immune  system  progenitor  cells.  Hence,  the  adverse effects on immune function can be predicted based on pharmacologic activity and can usually be reliably evaluated in non-clinical studies. For other types of compounds not intended   to   suppress   the   immune   response,   distinction   between   exaggerated pharmacodynamics and non-target effects can be less obvious. As an example, some anti-inflammatory compounds have an effect on certain innate immune functions but do not necessarily affect the adaptive immune response.

1.3      Scope of the Guideline

This  guideline  is  focused  on  providing  recommendations  on  nonclinical  testing  for immunotoxicity  induced  by  human  pharmaceuticals.  It  is  restricted  to  unintended immunosuppression   and   immunoenhancement,   excluding   allergenicity   or   drug- specific autoimmunity.

This guideline applies to new pharmaceuticals intended for use in humans, as well as to marketed pharmaceuticals proposed for different indications or other variations on the  current  product  label  in  which  the  change  could  result  in  unaddressed  and relevant immunotoxicity issues. In addition, the guideline might also apply to drugs for  which  clinical  signs  of immunotoxicity  are  observed  during  clinical  trials  and following approval to market. The guideline does not apply to biotechnology-derived pharmaceutical products covered by ICH S6 Guideline1  and other biologicals.

Existing guidance documents on sensitization or hypersensitivity remain in force and are not affected by this document. It is beyond the scope of this guideline to provide specific guidance  on how  each immunotoxicity  study  should be  performed.  General methodology guidance is provided in the Appendix.

1.4      Overview

The general principles that apply to this guideline are:

1)        All new human pharmaceuticals should be evaluated for the potential to produce immunotoxicity;

2)        Methods    include    standard    toxicity    studies    (STS)    and    additional immunotoxicity   studies   conducted   as   appropriate.   Whether   additional immunotoxicity studies are appropriate should be determined by a weight of evidence review of factor(s) in section 2.1.

The description of the guideline below will follow the recommended decision process in immunotoxicity evaluation as shown in the flow diagram (Figure  1).   More detailed descriptions of the testing methods are in the Appendix.

2.         GUIDELINE

2.1       Factors to Consider in the Evaluation of Potential Immunotoxicity

Factors  to  consider  that  might  prompt  additional  immunotoxicity  studies  can  be identified  in  the  following  areas:  (1)  findings  from  STS;  (2)  the  pharmacological properties of the drug; (3) the intended patient population; (4) structural similarities to   known   immunomodulators;   (5)   the   disposition   of  the   drug;   and   (6)   clinical information.

The  initial  screen  for  potential  immunotoxicity  involves  standard  toxicity  studies. Data  from  rodent  and  non-rodent  studies  from  early  short  term  to  more  chronic repeat-dose  studies  should  be  taken  into  consideration.  Additional  details  on  the parameters that should be evaluated and the reporting of histopathology findings are provided in the Appendix.

2.1.1   Standard Toxicity Studies

Data from  STS  should be  evaluated  for  signs  of immunotoxic potential.  Signs that should be taken into consideration are the following:

1)        Hematological        changes       such        as       leukocytopenia/leukocytosis, granulocytopenia/granulocytosis, or lymphopenia/lymphocytosis;

2)        Alterations in immune system organ weights and/or histology (e.g., changes in thymus, spleen, lymph nodes, and/or bone marrow);

3)        Changes  in  serum  globulins  that  occur  without  a  plausible  explanation, such as effects on the liver or kidney, can be an indication that there are changes in serum immunoglobulins;

4)          Increased incidence of infections;

5)        Increased    occurrence    of    tumors    can    be    viewed    as    a    sign    of immunosuppression  in  the  absence  of  other  plausible  causes  such  as genotoxicity, hormonal effects, or liver enzyme induction.

Changes in these parameters could reflect immunosuppression or enhanced activation of the immune system. Immunosuppression is usually reflected by reduced values of immune parameters, whereas immunoenhancement is usually reflected by increased values. However, these relationships  are not absolute and can be inverted in  some cases.

Similar  to  the   assessment   of  risk  with  toxicities  in  other   organ   systems,  the assessment of immunotoxicity should include the following:

•    Statistical and biological significance of the changes;

•    Severity of the effects;

•    Dose/exposure relationship;

•    Safety factor above the expected clinical dose;

•    Treatment duration;

•    Number of species and endpoints affected;

•    Changes  that  may  occur  secondarily  to  other  factors  (e.g.,  stress,  see  the Appendix, section 1.4);

•    Possible cellular targets and/or mechanism of action;

•    Doses which produce these changes in relation to doses which produce other toxicities; and

•    Reversibility of effect(s).

2.1.2   Pharmacological Properties

If the pharmacological properties of a test compound indicate it has the potential to affect  immune  function  (e.g.,  anti-inflammatory  drugs),  additional  immunotoxicity testing   should    be   considered.        Information   obtained    from   the    nonclinical pharmacology  studies  on the  ability of the  compound to  affect the immune  system could be used in a weight of evidence approach to decide if additional immunotoxicity studies are needed.

2.1.3   Intended Patient Population

Additional immunotoxicity studies might be warranted if the majority of the patient population for whom the drug is intended is immunocompromised by a disease state or concurrent therapy.

2.1.4   Structural Similarity

Compounds   structurally   similar   to   compounds   with   known   immunosuppressive

properties should also be considered for additional immunotoxicity testing.

2.1.5   Disposition of the Drug

If the compound and/or its metabolites are retained at high concentrations in cells of the immune system, additional immunotoxicity testing should be considered.

2.1.6   Signs Observed in Clinical Trials or Clinical Use

Clinical findings suggestive of immunotoxicity in patients exposed to the drug could call for additional nonclinical immunotoxicity testing.

2.2       Weight of Evidence Review

A weight of evidence review should be performed on information from all the factors outlined above to determine whether a cause for concern exists. A finding of sufficient magnitude in a single area should trigger additional immunotoxicity studies. Findings from two or more factors, each one of which would not be sufficient on its own, could trigger  additional studies.   If additional immunotoxicity  studies  are not performed, the sponsor should provide justification.

3.        SELECTION   AND   DESIGN   OF   ADDITIONAL   IMMUNOTOXICITY STUDIES

3.1      Objectives

If  a  cause  for  concern  is  identified,  additional  immunotoxicity  studies  should  be performed to verify the immunotoxic potential  of the  compound. These  studies  can also help determine the cell type affected reversibility, and the mechanism of action. This type of information can also provide more insight into potential risk and possibly lead to biomarker selection for clinical studies.

3.2       Selection of assays

If the weight-of-evidence review indicates that additional immunotoxicity studies are called for, there are a number of assays which can be used. If there are changes in standard  toxicity  testing  data  suggesting    immunotoxicity,  the  type  of  additional immunotoxicity testing that is considered appropriate will depend on the nature of the   immunological   changes   observed   and   the   concerns   raised   by   the   class   of compound. It is recommended that an immune function study be conducted, such as a T-cell dependent antibody response (TDAR). If specific cell types that are affected in STS are not known to participate in a TDAR, assays that measure function of that specific  affected  cell  type  might be  conducted  (see the Appendix). Where  a  specific target is not identified, an immune function study such as the TDAR is recommended.

In addition, immunophenotyping of leukocyte populations, a non-functional assay, can be conducted to identify the specific cell populations affected and might provide useful clinical biomarkers.

3.3      Study Design

To assess drug-induced immunotoxicity, a generally accepted study design in rodents is a 28 day study with consecutive daily dosing. Adaptations of immunotoxicity assays have been described using non-rodent species. The species, strain, dose, duration, and

route   of   administration   used   in   additional   immunotoxicity   studies   should   be

consistent,  where  possible,  with  the  standard  toxicity  study  in  which  an  adverse immune  effect  was  observed.  Usually  both  sexes  should  be  used  in  these  studies, excluding nonhuman  primates.  Rationale  should be  given when  one  sex is  used  in other  species.  The  high  dose  should  be  above  the  no  observed  adverse  effect  level (NOAEL)  but  below  a  level  inducing  changes  secondary  to  stress  (see  Appendix, section  1.4).  Multiple  dose  levels  are  recommended  in  order  to  determine  dose- response relationships and the dose at which no immunotoxicity is observed.

3.4       Evaluation   of   Additional   Immunotoxicity   Studies   and   Need   for

Further Studies

Results  from  additional  immunotoxicity  studies  should be  evaluated  as to whether sufficient data are available to reasonably determine the risk of immunotoxicity:

1.        Additional  studies  might  show  that  no  risk  of  immunotoxicity  can  be detected and no further testing is called for;

2.        Additional studies might demonstrate a risk of immunotoxicity but fail to provide sufficient data to make a reasonable risk-benefit decision. In this case further testing might help provide sufficient information for the risk-

benefit decision;

3.        If the overall risk-benefit analysis suggests that the risk of immunotoxicity is  considered  acceptable  and/or  can  be  addressed  in  a  risk  management plan (see ICH E2E Guideline2), then no further testing in animals might be called for.

4.        TIMING     OF    IMMUNOTOXICITY    TESTING    IN     RELATION    TO

CLINICAL STUDIES

If the weight-of-evidence review indicates that additional immunotoxicity studies are appropriate,  these  should  be  completed  before  exposure  of  a  large  population  of patients,  usually  Phase  III.    This  will  allow  for  the  incorporation  of  monitoring immune system parameters in the clinical studies if appropriate.   The timing of the additional immunotoxicity testing might be determined by the nature of the effect by the test compound and the type of clinical testing that would be called for if a positive finding is observed with the additional immunotoxicity testing. If the target patient population  is  immunocompromised,  immunotoxicity  testing  can  be  initiated  at  an earlier time point in the development of the drug.

5.         REFERENCES

1.        ICH Harmonised Tripartite Guideline (S6) “Preclinical  Safety Evaluation of Biotechnology-Derived Pharmaceuticals”

2.        ICH Harmonised Tripartite Guideline (E2E) “Pharmacovigilance Planning”

Figure 1: Flow Diagram for Recommended Immunotoxicity Evaluation

All human pharmaceuticals (non-biologicals)
(2.1) Identify factors to consider
(2.2) Weight of evidence (WoE) review
(3.0) Conduct additional immunotoxicity studies
(3.4 Pt 2) Consider further immunotoxicity testing

APPENDIX: Methods to Evaluate Immunotoxicity

1.        Standard Toxicity Studies

The following table lists the parameters that should be evaluated in standard toxicity studies  for  signs  of immunotoxicity.  These  parameters  (excluding  hematology  and clinical chemistry) and methods for obtaining samples and evaluating tissue sections are described in more detail in documents from professional toxicological pathology societies.

ParameterSpecific Component
HematologyTotal and absolute differential leukocyte counts
Clinical ChemistryGlobulin levels1  and A/G ratios
Gross pathologyLymphoid organs / tissues
Organ weightsThymus, spleen (optional: lymph nodes)
HistologyThymus, spleen, draining lymph node and at least one additional lymph node, bone marrow2 , Peyer’s patch3 , BALT4 , NALT4

1      Unexplained   alterations   in   globulin   levels   could   call   for   measurement   of immunoglobulins.

2      Unexplained alterations in peripheral blood cell lines or histopathologic findings might suggest that cytologic evaluation of the bone marrow would be appropriate.

3        Oral administration only.

4       For inhalation or nasal route only. BALT: bronchus-associated lymphoid tissues. NALT: nasal-associated lymphoid tissues

1.1      Hematology and Clinical Chemistry

Total leukocyte counts and absolute differential leukocyte counts are recommended to assess  immunotoxicity.  When  evaluating  changes  in  globulin  levels,  other  factors should be taken into account (e.g., liver toxicity, nephrotoxicity).  Changes in serum globulins  can  be  an  indication  that  there  are  changes  in  serum  immunoglobulins. Although serum immunoglobulins are an insensitive indicator of immunosuppression, changes  in  immunoglobulins  levels  can  be  useful  in  certain  situations  in  order  to better understand target cell populations or mechanism of action.

1.2      Gross Pathology and Organ Weights

All lymphoid tissues  should be evaluated for gross  changes  at necropsy.   However, this  can be more  difficult  for the  Peyer’s  patches  of rodents  due to the  small  size. Spleen  and  thymus weights  should be recorded.   To minimize variability of spleen weights  in  dogs  and  monkeys,  bleeding  the  animals  thoroughly  at  necropsy  is recommended.   Atrophy of the thymus with  aging  can  preclude  obtaining  accurate thymus weight.

1.3      Histopathological Examination

Histopathological  changes  of  the  spleen  and  thymus  should  be  evaluated  as  an indicator of systemic immunotoxicity.  The lymphoid tissue that drains or contacts the

site of drug administration (and therefore is exposed to the highest concentration of the drug) should be examined. These sites include the Peyer’s patches and mesenteric lymph  nodes  for  orally  administered  drugs,  bronchus-associated  lymphoid  tissues (BALT)  for  drugs  administered  by  the  inhalation  route,  nasal-associated  lymphoid tissues (NALT) for drugs administered by the inhalation or nasal route (if possible), and the most proximal regional draining lymph nodes for drugs administered by the dermal, intramuscular, intradermal, intrathecal, or subcutaneous routes. The specific node selected and the additional lymph node should be at the discretion of the sponsor based on the sponsor’s experience. For intravenously administered drugs, the spleen can be considered the draining lymphoid tissue.

It is recommended that a “semi-quantitative” description of changes in compartments of lymphoid  tissues  be  used  in  recording  changes  and  reporting  treatment-related changes in lymphoid tissues.

1.4      Interpretation of Stress Related Changes

With  standard  toxicity  studies,  doses  near  or  at  the  maximum  tolerated  dose  can result  in  changes  to  the  immune  system  related  to  stress  (e.g.,  by  exaggerated pharmacodynamic action).  These effects on the immune system might be mediated by increased corticosterone or cortisol release or other mediators.   Commonly observed stress-related immune changes include increases in circulating neutrophils, decreases in circulating lymphocytes, decreases in thymus weight, decreases in thymic cortical cellularity and associated histopathologic changes, and changes in spleen and lymph node  cellularity.    Increases  in  adrenal  gland  weight  and/or  histologic  evidence  of adrenal cortical hyperplasia can also be observed.   Thymic weight decreases in the presence of clinical signs, such as decreased body weight and physical activity, are too often  attributed  to  stress.  These  findings  on  their  own  should  not  be  considered sufficient evidence of stress-related immunotoxicity. The evidence of stress should be compelling in order to justify not conducting additional immunotoxicity studies.

2.         Additional Immunotoxicity Studies

2.1      Assay Characterization and Validation

In  general,  the immunotoxicity test  selected  should  be widely  used  and  have been demonstrated to be adequately sensitive and specific for known immunosuppressive agents.   However,  in  certain  situations,  extensive  validation  might  have  not  been completed  and/or  the  assay  might  not  be  widely  used.     In  these  situations,  a scientific/mechanistic  basis   for   use   of  the   assay   is   called   for   and,   if  feasible, appropriate positive controls should be incorporated.

There  can  be  variations  of response  for  each  type  of immunotoxicity  test  used  by different labs. In most situations, these changes do not affect the ability of the assay to  assess  immunotoxicity.  However,  to  ensure  proper  assay  performance  and  lab proficiency,  several  standard  technical  validation  parameters  should  be  observed. These   parameters   can   include   determining   intra-   and   inter-assay   precision, technician-to-technician precision, limit of quantitation, linear region of quantitation and test sample stability. In addition, assay sensitivity to known immunosuppressive agents should be established. It is recommended that each laboratory test a positive control  concomitantly  with  an  investigational  compound  or  periodically  in  order  to demonstrate proficiency of performance, except for studies with non-human primates.

For  immunophenotyping,  if properly  validated  technically,  the  addition  of positive controls for each study might not be needed.

Immunotoxicity  studies  are  expected  to  be  performed  in  compliance  with  Good Laboratory  Practice  (GLP).  It  is  recognized  that  some  specialized  assays,  such  as those described below, might not comply fully with GLP.

2.2      T-cell Dependent Antibody Response (TDAR)

The  TDAR  should  be  performed  using  a  recognized  T-cell  dependent  antigen  (e.g., sheep red blood cells (SRBC) or keyhole limpet hemocyanin (KLH)) that results in a robust  antibody  response.   The  endpoint  selected  should  be justified  as  the  most appropriate for the chosen assay and the selected species.

Antigens for immunization should not be used with adjuvants without justification. Alum might be considered acceptable for use only in non-human primate studies. The relative  TDAR  response  can  be  strain-dependent,  especially  in  mice. With  outbred rats, there can be significant variability among rats within the same group. Inbred rat strains could be used with provision of sufficient exposure data to bridge to the strain used in the STS.

Antibody can be measured by using an ELISA or other immunoassay methods. One advantage of this method over the antibody forming cell response is that samples can be  collected  serially  during  the  study.  In  monkeys,  serial  blood  collection  can  be important due to the high inter-animal variability in the kinetics of the response. For these studies, data can be expressed as the sum of the antibody response over several collection dates (e.g., area under the curve).

When SRBC antigens are used for an ELISA, the preparation of the capture antigen that  is  coated  on  the  plates  is  considered  critical.  Whole  fixed  erythrocytes  or membrane  preparations  can  be  used  as  the  SRBC  capture  antigen.  ELISA  results should  be  expressed  either  as  concentration  or  as  titer,  but  expression  as  optical densities is not recommended.

2.3      Immunophenotyping

Immunophenotyping  is  the  identification  and/or  enumeration  of leukocyte  subsets using  antibodies.     Immunophenotyping  is  usually  conducted  by  flow  cytometric analysis or by immunohistochemistry.

Flow  cytometry,  when  employed  to  enumerate  specific  cell  populations,  is  not  a functional  assay. However, flow  cytometry can be used to measure  antigen-specific immune responses of lymphocytes.  Data obtained from peripheral blood can be useful as   a  bridge  for   clinical   studies  in  which   peripheral  blood   leukocytes   are   also evaluated. It is recommended that absolute numbers of lymphocyte subsets as well as percentages be used in evaluating treatment-related changes.

One of the advantages of immunohistochemistry over flow cytometry is that tissues from   standard   toxicity    studies   can   be    analyzed   retrospectively   if   signs    of immunotoxicity  are  observed.   In  addition,  changes  in  cell  types  within  a  specific compartment within the lymphoid tissue can be observed.   Some of the lymphocyte markers for certain species are sensitive to formalin fixation and can only be localized in tissue that are either fixed with certain fixatives or flash frozen.   Quantitation of leukocytes     and     intensity     of     staining     is     much     more      difficult     with immunohistochemistry.

When immunophenotyping studies are used to characterize or identify alterations in specific leukocyte  populations, the  choice  of the lymphoid  organs  and/or  peripheral blood to be evaluated should be based on changes observed. Immunophenotyping can be easily added to standard repeat dose toxicity studies and changes can be followed during the dosing phase and periods without drug exposure (reversal period).

2.4      Natural Killer Cell Activity Assays

Natural  killer  (NK)  cell  activity  assays  can  be  conducted  if  immunophenotyping studies  demonstrate  a  change  in  number,  or if STS  studies  demonstrate increased viral infection rates, or in response to other factors.  In general, all NK cell assays are ex vivo assays in which tissues (e.g., spleen) or blood are obtained from animals that have been treated with the test compound.   Cell preparations are co-incubated with target  cells  that  have  been  labeled  with  51Cr.  New  methods  that  involve  non- radioactive labels can be used if adequately validated.  Different effector to target cell ratios should be evaluated for each assay to obtain a sufficient level of cytotoxicity and generate a curve.

2.5      Host Resistance Studies

Host resistance studies involve challenging groups of mice or rats treated with the different doses of test compound with varying concentrations of a pathogen (bacteria, fungal, viral, parasitic) or tumor cells.   Infectivity of the pathogens or tumor burden observed in vehicle versus test compound treated animals is used to determine if the test compound is able to alter host resistance. Models have been developed to evaluate a wide range of pathogens such as Listeria monocytogenes, Streptococcus pneumoniae, Candida   albicans,   influenza    virus,   cytomegalovirus,    Plasmodium   yoelii   and Trichinella spiralis.   Tumor host resistance models in mice have used the  B16F10 melanoma and PYB6 sarcoma tumor cell lines.

Host  resistance  assays  can  provide  information  on  the  susceptibility  to  particular classes  of  infectious  agents  or  tumor  cells  and  can  have  an  impact  on  the  risk management  plan.  In  addition,  they  can  have  an  important  role  in  identifying  or confirming the cell type affected by a test compound. Moreover, host resistance assays involve innate immune mechanisms for which specific immune function assays have not been  developed.   In  conducting host resistance  studies, the investigator  should carefully  consider  the  direct  or  indirect  (non-immune  mediated)  effects  of the  test compound  on  the  growth  and  pathogenicity  of  the  organism  or  tumor  cell.     For instance, compounds that inhibit the proliferation of certain tumor cells can seem to increase host resistance.   An in vitro assay to test direct effects on the organism is recommended.

2.6      Macrophage/Neutrophil Function

In  vitro  macrophage  and  neutrophil  function  assays  (phagocytosis,  oxidative burst, chemotaxis,  and  cytolytic  activity)  have  been  published  for  several  species.  These assays assess macrophage/neutrophil function of cells exposed to the test compound in vitro or obtained from animals treated with the test compound (ex vivo assay). In vitro exposure to test compound can also be investigated.  An in vivo assay can also be used to  assess  the  effects  on  the  reticuloendothelial  cell  to  phagocytize  radioactively  or fluorescently labeled targets.

2.7      Assays to Measure Cell-Mediated Immunity

Assays to measure cell-mediated immunity have not been as well established as those used for the antibody response. These are in vivo assays where antigens are used for sensitization.  The  endpoint  is  the  ability  of  drugs  to  modulate  the  response  to challenge. Delayed-type hypersensitivity (DTH) reactions with protein immunization and  challenge  have  been  reported  for  mice  and  rats.  Models  in  which  contact sensitizers are used have been explored in mice but have not been well validated or extensively used. Cytotoxic T cell response can be generated in mice using a virus, tumor cell line, or allograft as the antigenic challenge. Monkey DTH reactions have also  been  reported.   However,  these  reactions   in  monkeys   are  very   difficult  to consistently reproduce.   In addition, one should make sure that the DTH response is not mistaken for an antibody and complement mediated Arthus reaction.

What are your Feelings
Share This Article :
  • Facebook
  • X
  • LinkedIn
  • Pinterest
Still stuck? How can we help?

How can we help?

Updated on March 3, 2025
S9S7B

Powered by BetterDocs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Connect

Copyright © 2025 Aibio AB

biopharma.ai
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}